China Good quality Metal Injection Moulded Copper Base Gears for Automobile Parts with Best Sales

Product Description

Iron alloy base sintered oil sleeve bushing by powder metallurgy

Material Iron powder, alloy powder,precious metal powder
Technology Sintering – Powder Metallurgy
  Certificate ISO9001/TS16949
Surface Treatment High frequency quenching, oil impregnation,CNC,vacuum cleaning,polishing,
Apperance No crumbling, cracks, exfoliation, voids, metal pitting and other defects
Process Flow
Powder mixing – Forming – Sintering – Oil impregnation – Sizing -Ultrasonic cleaning – Steam oxidation – Oil impregnation – Final inspection – Packing
Application Motorcycle parts, auto parts, Power Tools parts, Motor parts, electric Bicycle,

Production process of powder metallurgy
Powder mixing – Forming – Sintering – Oil impregnation – Sizing -Ultrasonic cleaning – Steam oxidation – Oil impregnation – Final inspection – Packing

A trained, qualified, and dedicated work force

  1. Engineering is our strength – we will help your designers convert your parts to cost-effective powdered metal parts.
  2. Every employee is trained to a standard of excellence.

Quality is designed into the process

  1. Consistent and committed attitude to quality first.

Critical characteristics are measured and controlled using the latest statistical methods

  1. Quality is always the first priority.
  2. Our subcontractors are held to the same high standards.


Application: Motor, Electric Cars, Motorcycle, Machinery
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Sintered Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
US$ 0/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

automobile gear

Can you explain the process of shifting gears smoothly in a manual car?

Shifting gears smoothly in a manual car is a skill that requires coordination and practice. Here’s a detailed explanation of the process:

1. Clutch Operation:

Before shifting gears, it’s essential to understand the operation of the clutch pedal. The clutch is used to temporarily disconnect the engine’s power from the transmission, allowing smooth gear engagement. To shift gears smoothly:

  • Press the clutch pedal fully to disengage the clutch.
  • Keep the clutch pedal depressed throughout the shifting process.

2. Throttle Control:

While shifting gears, it’s important to synchronize the engine speed (RPM) with the speed of the transmission. Here’s how to manage the throttle:

  • Gradually release the accelerator pedal as you prepare to shift.
  • Avoid abruptly lifting off the throttle, as it can cause a sudden drop in engine RPM.

3. Shifting Process:

Once the clutch is fully depressed, and the throttle is appropriately controlled, follow these steps to shift gears smoothly:

  • Move the gear lever to the desired gear position while keeping the clutch pedal depressed.
  • Avoid applying excessive force or rushing the gear lever movement.
  • Wait for a brief moment after moving the gear lever to allow the gears to synchronize.

4. Releasing the Clutch:

After the gear lever is in the new position, smoothly release the clutch pedal while simultaneously modulating the throttle. Here’s how to do it:

  • Gradually release the clutch pedal while applying gentle pressure on the accelerator pedal.
  • Coordinate the release of the clutch with the increase in engine RPM.
  • Avoid releasing the clutch too quickly or abruptly, as it can cause jerky gear engagement or stalling.

5. Practice and Smooth Transitions:

Smooth gear shifting requires practice and familiarity with the specific vehicle’s clutch and gearbox characteristics. Consider the following tips for achieving smooth transitions:

  • Practice shifting gears in an open area with minimal traffic until you become comfortable.
  • Develop a feel for the clutch engagement point, which is the position where the clutch starts to transmit power.
  • Anticipate the need for gear changes by observing the engine RPM and road conditions.
  • During upshifting, aim to shift gears when the engine RPM reaches a moderate level, typically between 2,000 and 3,000 RPM.
  • During downshifting, match the engine RPM to the lower gear’s appropriate range to ensure smooth engagement.

Remember, mastering smooth gear shifting requires practice, coordination, and a good understanding of your vehicle’s clutch and gearbox. With time and experience, you’ll be able to shift gears seamlessly and enjoy a smoother driving experience.

automobile gear

What is the impact of gear selection on fuel efficiency in a car?

Gear selection in a car has a significant impact on fuel efficiency. Here’s a detailed explanation:

1. Optimal Engine Speed:

Choosing the right gear allows the engine to operate at its optimal speed or within its “power band.” Each engine has a range of RPM (revolutions per minute) where it delivers the best balance of power and fuel efficiency. By selecting the appropriate gear, the engine can stay within this range, maximizing fuel efficiency.

2. Engine Load:

Gear selection affects the load on the engine. Higher gears, such as fifth or sixth gear, provide a higher gear ratio, reducing the engine’s rotational speed for a given vehicle speed. This reduces the load on the engine and can improve fuel efficiency, especially during highway driving where maintaining a steady speed is common.

3. Avoiding Over-Revving:

Shifting to a higher gear at the right time helps prevent the engine from over-revving. Over-revving occurs when the engine operates at excessively high RPM, which can waste fuel and potentially cause engine damage. By upshifting in a timely manner, the engine can run at a more efficient RPM range, leading to better fuel economy.

4. Acceleration and Deceleration:

The choice of gear during acceleration and deceleration also affects fuel efficiency. During acceleration, shifting up to higher gears smoothly and at appropriate RPM levels promotes fuel efficiency. Similarly, when decelerating, downshifting to lower gears while utilizing engine braking can save fuel by reducing the need for excessive braking and maintaining better control over vehicle speed.

5. Driving Conditions:

The impact of gear selection on fuel efficiency can vary based on driving conditions. For example, in hilly or mountainous terrains, downshifting to lower gears on uphill climbs can provide the necessary power while avoiding excessive fuel consumption. In stop-and-go city traffic, selecting lower gears can aid in smoother acceleration from a standstill, reducing fuel waste.

6. Manual vs. Automatic Transmissions:

The impact of gear selection on fuel efficiency can differ between manual and automatic transmissions. Manual transmissions offer more control over gear selection, allowing drivers to optimize fuel efficiency by choosing the most suitable gear for a given situation. On the other hand, modern automatic transmissions are designed to optimize fuel efficiency by automatically selecting the appropriate gear based on driving conditions and engine load.

In summary, gear selection plays a crucial role in determining fuel efficiency in a car. Optimal gear selection helps keep the engine operating at its most efficient RPM range, reduces engine load, prevents over-revving, and promotes smoother acceleration and deceleration. By understanding the relationship between gear selection and fuel efficiency, drivers can adopt driving habits that maximize fuel economy and reduce fuel consumption.

automobile gear

What is an automobile gear and how does it function in a vehicle?

An automobile gear is a mechanical component used in vehicles to transmit power from the engine to the wheels, allowing the vehicle to move forward or backward at different speeds. Here’s a detailed explanation of its function:

In a vehicle, the engine produces rotational power or torque. This power needs to be transmitted to the wheels in a controlled manner to enable the vehicle to move. The automobile gear system performs this task.

The primary function of the automobile gear is to change the gear ratio between the engine and the wheels, thereby adjusting the speed and torque output. It allows the engine to operate efficiently across a wide range of vehicle speeds and load conditions.

The most common type of automobile gear system is the manual transmission, consisting of multiple gears arranged in a specific sequence. The driver selects the appropriate gear based on the desired speed and road conditions.

When the driver shifts gears, the gearshift mechanism engages a specific gear combination. Each gear has a different gear ratio, which determines the speed and torque output. The lower gears provide higher torque output but lower vehicle speed, while the higher gears allow for higher speed but lower torque.

When starting the vehicle from a standstill, the driver typically engages the first gear, which provides the highest torque output. As the vehicle gains speed, the driver shifts to higher gears to increase the speed while maintaining optimal engine performance.

Inside the transmission, the gears are mounted on shafts and connected to the engine and the wheels through a series of gears, shafts, and clutches. When a gear is engaged, power is transmitted from the engine through the input shaft, and the corresponding output shaft connected to the wheels rotates at a speed determined by the gear ratio.

The gear ratio is the ratio of the number of teeth on the driving gear (connected to the engine) to the number of teeth on the driven gear (connected to the wheels). By changing the gear ratio, the speed of the wheels relative to the engine speed can be adjusted.

In addition to manual transmissions, there are also automatic transmissions and continuously variable transmissions (CVTs) used in vehicles. These transmission types use different mechanisms, such as planetary gearsets or pulley systems, to achieve gear ratio changes automatically without direct driver intervention.

Overall, the automobile gear system plays a crucial role in transferring power from the engine to the wheels, allowing the vehicle to move at different speeds. It enables the driver to control the vehicle’s acceleration, speed, and overall performance by selecting the appropriate gear ratio based on the driving conditions.

China Good quality Metal Injection Moulded Copper Base Gears for Automobile Parts with Best SalesChina Good quality Metal Injection Moulded Copper Base Gears for Automobile Parts with Best Sales
editor by CX 2023-09-23